
QDB: From Quantum Algorithms Towards Correct1

Quantum Programs2

Yipeng Huang1
3

Department of Computer Science, Princeton University4

yipeng@cs.princeton.edu5

https://orcid.org/0000-0003-3171-69016

Margaret Martonosi7

Department of Computer Science, Princeton University8

mrm@princeton.edu9

Abstract10

With the advent of small-scale prototype quantum computers, researchers can now code and run11

quantum algorithms that were previously proposed but not fully implemented. In support of12

this growing interest in quantum computing experimentation, programmers need new tools and13

techniques to write and debug QC code. In this work, we implement a range of QC algorithms14

and programs in order to discover what types of bugs occur and what defenses against those15

bugs are possible in QC programs. We conduct our study by running small-sized QC programs16

in QC simulators in order to replicate published results in QC implementations. Where possible,17

we cross-validate results from programs written in different QC languages for the same problems18

and inputs. Drawing on this experience, we provide a taxonomy for QC bugs, and we propose19

QC language features that would aid in writing correct code.20

2012 ACM Subject Classification Computer systems organization → Quantum computing21

Keywords and phrases Correctness, debugging22

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2018.23

1 Introduction24

Quantum computing is reaching an inflection point. After years of work on both QC25

algorithms and low-level QC devices, small but viable QC prototypes are now available to26

run programs. These QC prototypes are increasing in size, with much research attention27

being placed on improving their reliability and increasing the counts of qubits (quantum28

bits), the fundamental building block for QC [11, 19, 31].29

With small-scale machines available to run real code, a natural challenge lies in creating30

correct and useful programs to run on them [3, 12]. Until recently, QC algorithms were31

rarely programmed for actual execution, and therefore relatively little QC debugging has ever32

occurred. Furthermore, QC debugging faces challenges beyond that of classical computing.33

In particular, typical debugging approaches based on printing out variable values during34

program execution do not easily apply to QC programs, because program states in QC35

“collapse” to classical values when observed. Second, QC’s “no cloning rule” precludes us36

from making a spare copy of variables to observe them elsewhere. Third, while we have37

more freedom to observe states in QC simulations on classical computers, the massive state38

spaces of QC executions limits this approach to small programs. Finally, even when limited39

simulations are tractable, it can be difficult to interpret the simulation results.40

1 This work is funded in part by EPiQC, an NSF Expedition in Computing, under grant 1730082

© Yipeng Huang and Margaret Martonosi;
licensed under Creative Commons License CC-BY

The 9th Workshop on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018).
OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

XX:2 QDB: From Quantum Algorithms Towards Correct Quantum Programs

This paper surveys a range of QC algorithms and programs and offers a set of empirical41

and experiential insights on today’s state-of-the-art in QC debugging. For three benchmarks42

representing different application areas, we perform detailed debugging based on small-scale43

simulations. For each, we give case studies of the types of bugs we found. Most importantly,44

we use these experiences to assemble a set of “design patterns for QC programming” and45

related best practices in QC debugging.46

In particular, the contributions of this paper are as follows:47

We specifically explore three major areas: quantum chemistry, integer factorization, and48

database search. This is a broad spectrum of QC algorithms across not just application49

domains, but also problem size and algorithm strategies. This allows us to point out50

particular domain-specific challenges or opportunities.51

Where available, we study the same algorithm implemented in different languages or52

infrastructures. From this, we draw comparative insights regarding how programming53

language or environment support can be useful in QC programming and debugging.54

From these insights and experiences, we lay out a plan for debugging support in QC pro-55

gramming environments to aid users in creating quantum code. These include assertions,56

unit testing, code reuse, polymorphism, and QC-specific language types and syntax.57

Overall, while QC programming has received significant prior attention and QC debugging58

has received some as well, our work offers steps forward in its detailed and comparative59

assessment across problem types and languages. We see our work offering useful insights for60

QC programmers themselves, as well as language and system designers interested in building61

next-generation compilers and debuggers.62

2 Background on QC programming63

First, we review the principles of quantum computing [14, 22, 23, 26], in order to understand64

how writing correct quantum programs is different from classical programming.65

2.1 Qubits, superpositions, and entanglement66

The basic unit of information in QC is the qubit, which can take on values of |0〉 and |1〉 like67

bits in classical computing, but can also be viewed as a probabilistic “superposition” between68

the two values. Quantum computers can also “measure” the value of a qubit, forcing it to69

collapse out of superposition into a classical value such as ‘0’ or ‘1’. Measurement disturbs70

the values of variables in a quantum computer, so we cannot easily pause execution and71

observe the values of qubits as a quantum program runs.72

The state of individual qubits can be “entangled” together. For this reason, as more73

qubits come into play in a quantum computer, the number of states that data can be in grows74

exponentially. For example, a two-qubit system can take on the values |00〉 , |01〉 , |10〉 , |11〉,75

along with superpositions among these values; furthermore, the two qubits can even be in a76

state of entanglement where the two cannot be treated as independent pieces of information.77

A three qubit system has potential superpositions of eight states, and so on. This exponential78

growth of possible values underlies the power of QC.79

As a result of this large number of possible states, running a quantum program in80

simulation on a classical computer is costly. Naive simulation of a 20-qubit quantum81

computer, for example, needs 220 or roughly one million floating point numbers just to store82

the program state at any instant. For this reason, testing and debugging quantum programs83

in simulation is only possible for toy-sized programs.84

Y. Huang and M. Martonosi XX:3

U

q0

q1 C

q0

q1 B A

D

=

Figure 1 Decomposition of a simple QC program. Time flows left to right, showing sequences of

operations applied to qubits q0 and q1. The left program is a “controlled” arbitrary operation U ,

which means whether the operation U works on q1 is dependent on the value of q0. The left sequence

decomposes into the equivalent right sequence of more basic operations. The basic operations include

single-qubit “rotations” A through D that alter the probability distribution of qubit values. The

operations also include two two-qubit “CNOT” operations that flip a qubit (denoted ⊕) contingent

on the value of another qubit (denoted •) [26].

2.2 Quantum computer operations, programs, and a taxonomy for bugs85

The process of quantum computing involves applying operations on qubits. We use diagrams86

such as Figure 1 to represent sequences of quantum operations. Looking at Figure 1 we see87

that quantum programs consist of three conceptual parts [8]:88

1. Inputs to quantum algorithms include classical input parameters such as coefficients for89

rotations A through D, and quantum initial values for qubits such as q0 and q1.90

2. Operations, such as the specification of how a complex operation such as controlled91

arbitrary operation U (Figure 1, left) decomposes into basic operations A through D and92

CNOTs (Figure 1, right). Additionally, both basic and complex operations can be further93

composed according to patterns such as iteration, recursion, and mirroring.94

3. Outputs of quantum algorithms are the final classical measurement values of qubits such95

as q0 and q1. Furthermore, any temporary variables used in the course of a program have96

to be safely disentangled from the rest of the quantum state and discarded.97

Bugs in quantum programs can crop up due to mistakes made in any of these three parts98

of a QC program. We will give examples of each kind of bug along with how to prevent them,99

using detailed case studies in the rest of this paper.100

2.3 QC algorithm primitives, benchmarks, and open source frameworks101

Given the rapid growth of QC infrastructure, we now have a chance to test a variety of102

quantum algorithms written in many languages [18]. Many different quantum algorithms rely103

on a handful of QC algorithm primitives to get speedups relative to classical algorithms [4, 24,104

25]. Table 1 classifies canonical quantum algorithms according to their algorithm primitives,105

and cites example implementations in different QC languages and tool chains.106

This paper specifically focuses on program bugs and defenses in three areas: a quantum107

chemistry problem that uses quantum phase estimation, integer factorization using Shor’s108

order finding algorithm, and Grover’s database search algorithm.109

Using programs written in the Scaffold language as a starting point [13], we compile110

Scaffold code to OpenQASM, a QC assembly language [5]. Then, we simulate the programs111

operation-by-operation in the QX simulator [15], in order to see their intermediate states and112

outputs. We cross reference the programs’ results against implementations in other languages,113

such as LIQUi|> [32], ProjectQ [10, 36] and Q# [37]. From this debugging experience we114

identify possible bugs and defenses. Furthermore, we review the codes across languages to115

understand the relative merits of different QC language features.116

PLATEAU 2018

XX:4 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 1 Quantum algorithm primitives and open source benchmarks in open source tool chains.

Primitives Quantum algorithms Benchmark implementations

Entanglement

protocols

superdense coding /

quantum teleportation

Q# teleportation [37]

pyQuil teleportation [35]

Quantum

(random)

walks

tree traversal Scaffold / Quipper binary welded tree [6, 13, 39]

graph traversal Scaffold / Quipper triangle finding problem [6, 13, 39]

satisfiability Scaffold / Quipper Boolean formula [6, 13, 39]

Adiabatic

Ising spin model Scaffold / Q# adiabatic Ising model [13, 37]

quantum approximate

optimization algorithm

QISKit Aqua QAOA

pyQuil QAOA ansatz [35]

Variational

Quantum

Eigensolver

Hamiltonian simulation

QISKit Aqua quantum chemistry

Q# H2 simulation [37]

Rigetti Grove VQE [35]

Quantum

Fourier

Transform

(QFT)

phase estimation Scaffold / Quipper ground state estimation [6, 13, 39]

period finding Scaffold class number [13]

order finding Scaffold / ProjectQ / Q# Shor’s factoring [13, 36, 37]

hidden subgroup problem Quipper unique shortest vector [6, 39]

linear algebra Quipper quantum linear systems [6, 39]

Amplitude

amplification
database search

Scaffold square root [13]

ProjectQ / Q# Grover’s database search [36, 37]

3 Case study: Quantum chemistry117

First, we discuss our experience building up and debugging a simple quantum chemistry118

program. Quantum chemistry problems entail finding properties of molecules from theoretical119

first principles [20, 27]. Researchers anticipate these will be the first applications for QC due120

to the relatively few number of qubits they need to surpass classical computer algorithms.121

Debugging these problems is distinctively challenging, due to the importance of getting a122

large number of classical input parameters all correct, and because of the dearth of physically123

meaningful intermediate states we can check in the course of algorithm execution.124

3.1 Bug type 1: Incorrect classical input parameters125

A key part of quantum chemistry programs is in correctly building up a “Hamiltonian”126

subroutine that simulates inter-electron forces. The procedure for doing this was laid out in127

detail by Whitfield [41]. We followed this procedure to create a subroutine for simulating128

the hydrogen molecule, but we needed additional validation from several other sources to129

get a bug-free subroutine [40]. These resources include raw chemistry data found in open130

source repositories for the LIQUi|> framework2. The final parameters for actual operations131

on qubits were validated against a follow-up paper [33] and an implementation in the132

QISKit framework3. Because the procedure for preparing these quantum chemistry models133

involves many steps and needs domain expertise, software packages such as OpenFermion134

now automate this process [21]. Nonetheless, there is room for improvement in standardizing135

input data formats to eliminate bugs in this process.136

Once the Hamiltonian subroutine is built, we can use the model in a variety of quantum137

algorithms spanning different primitives in Table 1. These include phase estimation (an138

2 https://github.com/StationQ/Liquid/blob/master/Samples/h2_sto3g_4.dat
3 https://github.com/Qiskit/aqua/blob/master/test/H2-0.735.json

Y. Huang and M. Martonosi XX:5

Table 2 QC calculated energy for H2 (bond length = 73.48 pm) for different electron assignments.

Electron assignments
QC calculated

energy (relative)
Bonding Antibonding

↑ ↓ ↑ ↓

3rd excited state (E3) 0 0 1 1 -0.164

2nd excited state (E2)
0 1 1 0

-0.217
1 0 0 1

1st excited state (E1)
0 1 0 1

-0.244
1 0 1 0

Ground state (G) 1 1 0 0 -0.295

application of quantum Fourier transforms) [28], variational quantum eigensolvers [30], and139

adiabatic algorithms [1]. In this paper, we use iterative phase estimation to find the ground140

state energy of our H2 model, validating results published by Lanyon [17].141

3.2 Bug type 2: Incorrect quantum initial values142

The correct preparation of qubit initial values is important. Incorrect initial values would143

cause the program to find solutions to different problems altogether. In this quantum144

chemistry problem, the initial values control the locations of the two electrons in H2. As145

shown in Table 2, we need the qubit assignment for finding the ground energy of H2, while146

other assignments lead to results for other energy levels.147

The symmetry of H2 allows us to perform a sanity check, to make sure the Hamiltonian148

and the iterative phase estimation subroutines are working correctly. Though there are six149

ways to assign two electrons to four locations, there are in fact only four distinct energy150

levels, as shown in the experimental data. Checking that the two different ways to obtain E1151

(and E2) give the same energy levels validates that the model correctly preserves symmetry.152

3.3 Defense type 1: Assertions on algorithm preconditions153

Given how important correct initial values are for all quantum algorithms, it is worthwhile154

to explicitly check for these algorithm preconditions before continuing with execution or155

simulation. What the preconditions should be depends on the type of algorithm. For example,156

the phase estimation subroutine in this case study (along with other algorithms relying on157

quantum Fourier transforms), expect inputs that are maximally in superposition among all158

possible values. Likewise, “ancillary qubits” such as the inputs to the Hamiltonian subroutine159

take on completely classical (integer) initial values. Lastly, quantum protocols often need to160

start with entangled states. These required input states are among the few places in quantum161

algorithms where we can check states for specific values. We can check these preconditions162

by running or simulating programs up to the entry point of subroutines, and performing a163

premature measurement to check for these anticipated states, finally restarting the program164

knowing that execution is correct up to that point. Thus far, the Q# framework has the165

most extensive support for precondition checking [37].166

3.4 Defense type 2: Assertions on algorithm progress167

Unlike the other two case studies later in this paper, the debugging process for the quantum168

chemistry benchmark is coarse-grained. That is because the Hamiltonian subroutine is a169

monolithic block of code whose components do not have obvious expected outputs—its170

PLATEAU 2018

XX:6 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 3 Shor’s factorization algorithm subroutines [23, p. 25].

Program subroutine code Shared library code

Shor’s routine for factoring 15;

calculating powers of a number

controlled modular multiplication

controlled modular addition

controlled addition

quantum Fourier transform

controlled controlled rotation

controlled rotation

controlled swap

swap

Table 4 Correct and incorrect code for rotation decomposition. Using the Scaffold language [13]

as an example, we code out the controlled operation U in Figure 1 where U is a rotation in just one

axis. Because only one axis is needed, we can drop either operation A or C, paying attention to the

sign on the angles. Reordering the lines of code or signs results in a rotation in the wrong direction.

Correct, operation A unneeded Correct, operation C unneeded Incorrect, angles flipped

Rz(q1,+angle/2); // C CNOT(q0,q1); Rz(q1,-angle/2);

CNOT(q0,q1); Rz(q1,-angle/2); // B CNOT(q0,q1);

Rz(q1,-angle/2); // B CNOT(q0,q1); Rz(q1,+angle/2);

CNOT(q0,q1); Rz(q1,+angle/2); // A CNOT(q0,q1);

Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D Rz(q0,+angle/2); // D

components represent pair-wise electron interactions, and do not have inherent physical171

meaning. So how do we debug this program? The preconditions in the last section make sure172

the inputs to the algorithm are correct; the other observable state we have for debugging is173

to check the behavior of the algorithm as a whole.174

In this quantum chemistry program, we can check for two types of overall algorithm175

behavior. One is the solution should converge to a steady value as finer Trotter time steps (a176

kind of numerical approximation) are chosen; a lack of this type of convergence indicates177

a bug in the Hamiltonian subroutine. The other algorithm behavior is when we vary the178

precision of the phase estimation algorithm, the most significant bits of the measurement179

output sequences should be the same—in other words, rounding the output of a high-precision180

experiment should yield the same output as a lower-precision experiment. a lack of this181

convergence indicates a bug in the iterative phase estimation subroutine. These checks for182

expected algorithm progress also apply to other algorithms.183

4 Case study: Shor’s algorithm for integer factorization184

While our debugging strategy for quantum chemistry had to be coarse-grained, the debugging185

process for Shor’s algorithm in this section allows us to look inside the program one subroutine186

at a time, where we can compare the intermediate results against known expected values.187

Shor’s factorization algorithm uses a quantum computer to factor a composite number188

in polynomial time complexity, providing exponential speedup relative to the best known189

classical algorithms [34]. We follow an example for an implementation that minimizes the190

qubit cost [2], and replicate results for factoring 15, the simplest example [16] [26, p. 235].191

4.1 Bug type 3: Incorrect operations and transformations192

In order to correctly implement Shor’s algorithm we first have to build up the quantum193

subroutines shown in Table 3. These basic subroutines can be tricky to get right. Take the194

Y. Huang and M. Martonosi XX:7

Listing 1 Controlled adder subroutine using Fourier transform in the Scaffold language [13].

1// outputs a + b, where a is a ‘width ’ bit constant integer

2// b is an integer encoded on ‘width ’ qubits in Fourier space

3module cADD (

4const unsigned int c_width , // number of control qubits

5qbit ctrl0 , qbit ctrl1 , // control qubits

6const unsigned int width , const unsigned int a, qbit b[]

7) {

8for (int b_indx =width -1; b_indx >=0; b_indx --) {

9for (int a_indx = b_indx ; a_indx >=0; a_indx --) {

10if ((a >> a_indx) & 1) { // shift out bits in constant a

11double angle = M_PI/pow (2, b_indx - a_indx); // rotation angle

12switch (c_width) {

13case 0: Rz (b[b_indx], angle); break ;

14case 1: cRz (ctrl0 , b[b_indx], angle); break ;

15case 2: ccRz (ctrl0 , ctrl1 , b[b_indx], angle); break;

16}}}}}

controlled rotation in Figure 1 as an example: Table 4 shows multiple ways to code the195

decomposition of the controlled rotation, and small mistakes can lead to incorrect behavior.196

4.2 Defense type 3: Language support for subroutines / unit tests197

An obvious defense against coding mistakes in basic subroutines is to use a library of shared198

code. Doing so helps ensure program correctness by allowing programmers to exhaustively199

validate small subroutines, in order to bootstrap larger subroutines. Unit testing is especially200

important in QC as running or simulating large quantum programs is impossible for now.201

An additional benefit is logically structured code allows compilers to select the best con-202

crete implementation for the abstract functionality the programmer needs, based on hardware203

constraints and input parameters [8]. For example, the most cost-efficient implementation for204

modular exponentiation in Shor’s factorization algorithm depends on how many qubits are205

available: the compiler can choose from minimum-qubit [2, 9, 38] or minimum-operation [29]206

implementations for the arithmetic subroutines.207

4.3 Bug type 4: Incorrect composition of operations using iteration208

Once we have built our basic subroutines, a common pattern in quantum programs is to use209

iterations to compose subroutines. Listing 1 shows the iteration code for a constant-value210

adder, showing tricky places in lines 8 through 11 for bugs to crop up, including indexing211

errors, bit shifting errors, endian confusion, and mistakes in rotation angles. In general this212

type of iteration code is commonplace in programs that rely on quantum Fourier transforms.213

4.4 Defense type 4: Language support for numerical data types214

One way to defend against bugs in iteration code is to introduce QC data types for numbers,215

providing greater abstraction than working with raw qubits. For example, ProjectQ has216

quantum integer data types [36], while Q# [37] and Quipper [6, 39] offer both big endian217

and little endian versions of subroutines involving iterations. These QC data types permit218

useful operators (e.g., checking for equality) that help with debugging and writing assertions.219

PLATEAU 2018

XX:8 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 5 Correct classical input a and a−1 to Shor’s algorithm for factoring 15, using 7 as a guess.

k, the algorithm iteration 0 1 2 3 . . .

a = 72
k

mod 15 7 4 1 1 . . .

a−1; a × a−1 ≡ 1 mod 15 13 4 1 1 . . .

Table 6 Probability of measuring values of outputs and ancillary qubits of Shor’s algorithm, with

incorrect inputs (a−1 = 12 instead of 13 on first iteration). If the ancillary qubits collapse to zero

on measurement, the algorithm still succeeds, returning correct outputs of 0, 2, 4, 6 [26, p. 235].

However, the possibility of measuring non-zero for the ancillary qubits indicates a bug.

Probability
Output measurement

0 1 2 3 4 5 6 7

Ancillary
0 1/8 0 1/8 0 1/8 0 1/8 0

qubit
4 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

measurement
7 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64
8 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

13 1/64 1/64 1/64 1/64 1/64 1/64 1/64 1/64

4.5 Bug type 5: Incorrect deallocation of qubits220

Variable scoping is an important language feature in classical computing that ensures proper221

data encapsulation. In QC, scoping is similarly important for temporary variables known222

as “ancillary qubits.” Anything that happens to a subroutine’s ancillary qubits—such as223

measurement, reinitialization, or lapsing into decoherence—may have unintended effects on224

the subroutine’s outputs4. Because improper ancillary qubit deallocation can lead to wrong225

results, it is important for subroutines to reverse their operations on their ancillary qubits,226

so that they properly undo any entanglement between the ancillary and output qubits.227

We can demonstrate a bug involving incorrect qubit deallocation, by deliberately making228

a mistake while reversing operations in a subroutine. For example, Shor’s algorithm relies on229

correct pairs modular inverse numbers as input parameters, such as those in Table 5. By230

feeding an incorrect pair of inputs (e.g., replacing 13 with a 12), the algorithm proceeds to231

possibly give us wrong output values, as shown in Table 6. At the same time, the mistake232

prevents the modular multiplication operation from being properly reversed, which has the233

effect of preventing the ancillary qubits from properly disentangling with other qubits, so234

they fail to return to their initial values at the end of the algorithm.235

4.6 Defense type 5: Assertions on algorithm postconditions236

We can use postconditions at the end of algorithms to detect bugs that lead to incorrect237

deallocation of ancillary qubits. Continuing with our example in Table 6, we see that the238

cases where ancillary qubits collapse to anything other than zero correspond to cases where239

the outputs are wrong. That is because the ancillary qubits remain improperly entangled240

with the output qubits at the end of the algorithm. We can detect these buggy outputs by241

asserting that ancillary qubits should always return to their initial values. The significance242

of these observations is that when algorithms work correctly, we typically do not care to243

measure the value of ancillary qubits as they do not contain information. But in buggy QC244

algorithm implementations, they are useful side channels for debugging.245

4 As an analogy in classical computing, it is as if accessing an out-of-scope variable can still affect program
state; while such behavior is unintuitive, it is a result of how entanglement works in QC.

Y. Huang and M. Martonosi XX:9

Table 7 Grover’s amplitude amplification subroutine in two languages, showcasing QC-specific

language syntax for reversible computation (rows 2 & 6) and controlled operations (rows 3 & 5).

Scaffold (C syntax) [13] ProjectQ (Python syntax) [36]

1

int j;

qbit ancilla[n-1]; // scratch register

for(j=0; j<n-1; j++) PrepZ(ancilla[j],0);

reflection across

uniform superposition

2

// Hadamard on q

for(j=0; j<n; j++) H(q[j]);

// Phase flip on q = 0...0 so invert q

for(j=0; j<n; j++) X(q[j]);

with Compute(eng):

All(H) | q

All(X) | q

3

// Compute x[n-2] = q[0] and ... and q[n-1]

CCNOT(q[1], q[0], ancilla[0]);

for(j=1; j<n-1; j++)

CCNOT(ancilla[j-1], q[j+1], ancilla[j]);

with Control(eng, q[0:-1]):

4
// Phase flip Z if q=00...0

cZ(ancilla[n-2], q[n-1]);
Z | q[-1]

5

// Undo the local registers

for(j=n-2; j>0; j–)

CCNOT(ancilla[j-1], q[j+1], ancilla[j]);

CCNOT(q[1], q[0], ancilla[0]);

ProjectQ automatically

uncomputes control

6

// Restore q

for(j=0; j<n; j++) X(q[j]);

for(j=0; j<n; j++) H(q[j]);

Uncompute(eng)

5 Case study: Grover’s algorithm for database search246

So far, we have presented defenses against bugs following two general strategies. One is247

to use assertions to detect when and where the program has a bug. The other is to use248

quantum-specific programming language features to prevent bugs altogether: these features249

include support for subroutines and numerical types for quantum data. Here in this section,250

we use the Grover’s benchmark to showcase two more language features for common QC251

program patterns: reversible computation and controlled operations.252

Grover’s search algorithm finds an entry that matches search criteria, among an input253

data set of size N , with a time cost on the order of
√

N . That represents a polynomial254

speedup relative to the linear time cost in a classical computer [7].255

The Grover’s algorithm comprises three parts. First, the input qubits representing the256

indices of the matching entries are put in a state of superposition, akin to querying all entries257

at once. Second, the queries are put through a subroutine that checks for the search criteria.258

In this case study, our criteria is to find the square root of a number in a Galois field of259

two elements, a simple abstract algebra setting. Finally in the critical step, the amplitude260

amplification algorithm primitive amplifies the index that matches the criteria while damping261

out those that do not. The operations in this final step are prime examples of two QC262

program patterns, reversible computation and controlled operations. We show in Table 7263

how these code patterns are written in two languages, Scaffold [13] and ProjectQ [36].264

5.1 Bug type 6: Incorrect composition of operations using mirroring265

Section 4.5 discussed how bugs in deallocating ancillary qubits can happen due to bad266

parameters. Here we see how bugs in deallocating ancillary qubits can happen due to267

incorrect composition of operations following a mirroring pattern. For example, in Table 7,268

PLATEAU 2018

XX:10 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Table 8 Applicability of defense strategies (down) against location of QC program bugs (across).

input operations output

classical qubit
basic iterate mirror recurse

qubit

params. alloc.
§4.1 §4.3 §5.1 §5.3

dealloc.

§3.1 §3.2 §4.5

QC

specific

lang.

features

unit testing §4.2 X X X X X X

data types §4.4 X

reverse comp. §5.2 X X X

controlled ops. §5.4 X X X

Assertion

checks

preconditions §3.3 X

algo progress §3.4 X X X X X X X

postconds. §4.6 X X X X X X X

the operations in rows 2 and 3 are respectively mirrored and undone in rows 6 and 5. These269

lines of code need careful reversal of every loop and every operation.270

5.2 Defense type 6: Language support for reversible computation271

Syntax support for reversible computation, such as that in ProjectQ [36], automatically272

mirrors and inverts sequences of operations, shortening code and reducing mistakes.273

5.3 Bug type 7: Incorrect composition of operations using recursion274

A common pattern in quantum programs involves performing operations (e.g., add), contingent275

on a set of qubits known as control qubits. Without language support, this pattern needs276

many lines of code and manual allocation of ancillary qubits. In the Scaffold code example277

in Table 7, rows 3 and 5 are just computing the intersection of qubits q, with the help of278

ancillary qubits initialized in row 1, in order to realize the controlled rotation operation in279

row 4. Furthermore, quantum algorithms often need varying numbers of control qubits in280

different parts of the algorithm, leading to replicated code from multiple versions of the same281

subroutine differing only by the number of control qubits5.282

5.4 Defense type 7: Language support for controlled operations283

Language support for controlled operations (e.g, ProjectQ) shortens code, preventing mistakes.284

6 Conclusion285

For the first time, we have access to comprehensive and representative program benchmarks286

for all major areas of quantum algorithms, implemented in multiple languages, along with287

input datasets and outputs that are detailed enough to permit cross-validation. Using288

our experience running and debugging these programs, we presented in this paper defense289

strategies that facilitate writing bug-free QC code, summarized in Table 8. Successful290

transplantation of these ideas from classical languages to QC languages can pave the way291

towards correct and useful quantum programs.292

5 An example appeared in the Shor’s case study Listing 1. The addition operation was contingent on
control qubits taken as parameters in lines 4 and 5. Depending on how many control qubits were needed,
the switch statement in lines 12 through 15 applied the correct operation.

Y. Huang and M. Martonosi XX:11

References293

1 R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Babbush,294

A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey,295

E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J. O’Malley, C. Quintana,296

P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, E. Solano, H. Neven, and297

John M. Martinis. Digitized adiabatic quantum computing with a superconducting circuit.298

Nature, 534:222 EP –, 06 2016. URL: http://dx.doi.org/10.1038/nature17658.299

2 Stephane Beauregard. Circuit for Shor’s algorithm using 2n+3 qubits. Quantum Info. Com-300

put., 3(2):175–185, March 2003. URL: http://dl.acm.org/citation.cfm?id=2011517.301

2011525.302

3 Frederic T. Chong, Diana Franklin, and Margaret Martonosi. Programming languages and303

compiler design for realistic quantum hardware. Nature, 549:180 EP –, 09 2017. URL:304

http://dx.doi.org/10.1038/nature23459.305

4 Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin, John Am-306

brosiano, Petr M. Anisimov, William Casper, Gopinath Chennupati, Carleton Coffrin,307

Hristo Djidjev, David Gunter, Satish Karra, Nathan Lemons, Shizeng Lin, Andrey Y.308

Lokhov, Alexander Malyzhenkov, David Mascarenas, Susan M. Mniszewski, Balu Nadiga,309

Dan O’Malley, Diane Oyen, Lakshman Prasad, Randy Roberts, Philip Romero, Nan-310

dakishore Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Bo-311

ram Yoon, Richard J. Zamora, and Wei Zhu. Quantum algorithm implementations for312

beginners. CoRR, abs/1804.03719, 2018. URL: http://arxiv.org/abs/1804.03719,313

arXiv:1804.03719.314

5 A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open Quantum Assembly315

Language. ArXiv e-prints, July 2017. arXiv:1707.03429.316

6 Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît317

Valiron. Quipper: A scalable quantum programming language. In Proceedings of the 34th318

ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI319

’13, pages 333–342, New York, NY, USA, 2013. ACM. URL: http://doi.acm.org/10.320

1145/2491956.2462177, doi:10.1145/2491956.2462177.321

7 Lov K Grover. From Schrödinger’s equation to the quantum search algorithm. Pramana,322

56(2-3):333–348, 2001.323

8 T. Häner, T. Hoefler, and M. Troyer. Using Hoare logic for quantum circuit optimization.324

ArXiv e-prints, September 2018. arXiv:1810.00375.325

9 Thomas Häner, Martin Roetteler, and Krysta M. Svore. Factoring using 2n + 2 qubits326

with toffoli based modular multiplication. Quantum Info. Comput., 17(7-8):673–684, June327

2017. URL: http://dl.acm.org/citation.cfm?id=3179553.3179560.328

10 Thomas Häner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias Troyer. High per-329

formance emulation of quantum circuits. In Proceedings of the International Conference for330

High Performance Computing, Networking, Storage and Analysis, SC ’16, pages 74:1–74:9,331

Piscataway, NJ, USA, 2016. IEEE Press. URL: http://dl.acm.org/citation.cfm?id=332

3014904.3015003.333

11 Aram Harrow. Why now is the right time to study quantum computing. XRDS, 18(3):32–334

37, March 2012. URL: http://doi.acm.org/10.1145/2090276.2090288, doi:10.1145/335

2090276.2090288.336

12 Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer. A software method-337

ology for compiling quantum programs. Quantum Science and Technology, 3(2):020501,338

2018. URL: http://stacks.iop.org/2058-9565/3/i=2/a=020501.339

13 Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T.340

Chong, and Margaret Martonosi. ScaffCC: A framework for compilation and analy-341

sis of quantum computing programs. In Proceedings of the 11th ACM Conference on342

PLATEAU 2018

XX:12 QDB: From Quantum Algorithms Towards Correct Quantum Programs

Computing Frontiers, CF ’14, pages 1:1–1:10, New York, NY, USA, 2014. ACM. URL:343

http://doi.acm.org/10.1145/2597917.2597939, doi:10.1145/2597917.2597939.344

14 Phillip Kaye, Raymond Laflamme, and Michele Mosca. An Introduction to Quantum Com-345

puting. Oxford University Press, Inc., New York, NY, USA, 2007.346

15 N. Khammassi, I. Ashraf, X. Fu, C. G. Almudever, and K. Bertels. QX: A high-performance347

quantum computer simulation platform. In Proceedings of the Conference on Design, Au-348

tomation & Test in Europe, DATE ’17, pages 464–469, 3001 Leuven, Belgium, Belgium,349

2017. European Design and Automation Association. URL: http://dl.acm.org/citation.350

cfm?id=3130379.3130487.351

16 B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James,352

A. Gilchrist, and A. G. White. Experimental demonstration of a compiled version353

of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett., 99:250505, Dec354

2007. URL: https://link.aps.org/doi/10.1103/PhysRevLett.99.250505, doi:10.355

1103/PhysRevLett.99.250505.356

17 B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D.357

Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik, and A. G. White.358

Towards quantum chemistry on a quantum computer. Nature Chemistry, 2:106 EP –, 01359

2010. URL: http://dx.doi.org/10.1038/nchem.483.360

18 R. LaRose. Overview and Comparison of Gate Level Quantum Software Platforms. ArXiv361

e-prints, July 2018. arXiv:1807.02500.362

19 Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Fig-363

gatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. Experimen-364

tal comparison of two quantum computing architectures. Proceedings of the National365

Academy of Sciences, 114(13):3305–3310, 2017. URL: http://www.pnas.org/content/366

114/13/3305, arXiv:http://www.pnas.org/content/114/13/3305.full.pdf, doi:10.367

1073/pnas.1618020114.368

20 S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan. Quantum computa-369

tional chemistry. ArXiv e-prints, August 2018. arXiv:1808.10402.370

21 J. R. McClean, I. D. Kivlichan, K. J. Sung, D. S. Steiger, Y. Cao, C. Dai, E. Schuyler371

Fried, C. Gidney, B. Gimby, P. Gokhale, T. Häner, T. Hardikar, V. Havlíček, C. Huang,372

J. Izaac, Z. Jiang, X. Liu, M. Neeley, T. O’Brien, I. Ozfidan, M. D. Radin, J. Romero,373

N. Rubin, N. P. D. Sawaya, K. Setia, S. Sim, M. Steudtner, Q. Sun, W. Sun, F. Zhang, and374

R. Babbush. OpenFermion: The Electronic Structure Package for Quantum Computers.375

ArXiv e-prints, October 2017. arXiv:1710.07629.376

22 N.D. Mermin. Quantum Computer Science: An Introduction. Cambridge University Press,377

2007.378

23 Tzvetan S. Metodi, Arvin I. Faruque, and Frederic T. Chong. Quantum computing379

for computer architects, second edition. Synthesis Lectures on Computer Architecture,380

6(1):1–203, 2011. URL: https://doi.org/10.2200/S00331ED1V01Y201101CAC013,381

arXiv:https://doi.org/10.2200/S00331ED1V01Y201101CAC013, doi:10.2200/382

S00331ED1V01Y201101CAC013.383

24 Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2:15023,384

2016.385

25 Michele Mosca. Quantum algorithms. In Encyclopedia of Complexity and Systems Science,386

pages 7088–7118. Springer, 2009.387

26 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:388

10th Anniversary Edition. Cambridge University Press, New York, NY, USA, 10th edition,389

2011.390

27 Jonathan Olson, Yudong Cao, Jonathan Romero, Peter Johnson, Pierre-Luc Dallaire-391

Demers, Nicolas Sawaya, Prineha Narang, Ian Kivlichan, Michael Wasielewski, and Alán392

Y. Huang and M. Martonosi XX:13

Aspuru-Guzik. Quantum information and computation for chemistry. arXiv preprint393

arXiv:1706.05413, 2017.394

28 S. Patil, A. JavadiAbhari, C. Chiang, J. Heckey, M. Martonosi, and F. T. Chong. Char-395

acterizing the performance effect of trials and rotations in applications that use quantum396

phase estimation. In 2014 IEEE International Symposium on Workload Characterization397

(IISWC), pages 181–190, Oct 2014. doi:10.1109/IISWC.2014.6983057.398

29 Archimedes Pavlidis and Dimitris Gizopoulos. Fast quantum modular exponentiation ar-399

chitecture for Shor’s factoring algorithm. Quantum Info. Comput., 14:649–682, May 2014.400

URL: http://dl.acm.org/citation.cfm?id=2638682.2638690.401

30 Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J.402

Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on403

a photonic quantum processor. Nature Communications, 5:4213 EP –, 07 2014. URL:404

http://dx.doi.org/10.1038/ncomms5213.405

31 John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,406

August 2018. URL: https://doi.org/10.22331/q-2018-08-06-79, doi:10.22331/407

q-2018-08-06-79.408

32 M. Roetteler, K. M. Svore, D. Wecker, and N. Wiebe. Design automation for quantum409

architectures. In Design, Automation Test in Europe Conference Exhibition (DATE), 2017,410

pages 1312–1317, March 2017. doi:10.23919/DATE.2017.7927196.411

33 Jacob T. Seeley, Martin J. Richard, and Peter J. Love. The Bravyi-Kitaev transforma-412

tion for quantum computation of electronic structure. The Journal of Chemical Physics,413

137(22):224109, 2012. URL: https://doi.org/10.1063/1.4768229, arXiv:https://doi.414

org/10.1063/1.4768229, doi:10.1063/1.4768229.415

34 Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms416

on a quantum computer. SIAM J. Comput., 26(5):1484–1509, October 1997. URL: http:417

//dx.doi.org/10.1137/S0097539795293172, doi:10.1137/S0097539795293172.418

35 R. S. Smith, M. J. Curtis, and W. J. Zeng. A Practical Quantum Instruction Set Architec-419

ture. ArXiv e-prints, August 2016. arXiv:1608.03355.420

36 Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open source software421

framework for quantum computing. Quantum, 2:49, January 2018. URL: https://doi.422

org/10.22331/q-2018-01-31-49, doi:10.22331/q-2018-01-31-49.423

37 Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bet-424

tina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler.425

Q#: Enabling scalable quantum computing and development with a high-level DSL. In426

Proceedings of the Real World Domain Specific Languages Workshop 2018, RWDSL2018,427

pages 7:1–7:10, New York, NY, USA, 2018. ACM. URL: http://doi.acm.org/10.1145/428

3183895.3183901, doi:10.1145/3183895.3183901.429

38 Yasuhiro Takahashi and Noboru Kunihiro. A quantum circuit for Shor’s factoring algorithm430

using 2n + 2 qubits. Quantum Info. Comput., 6(2):184–192, March 2006. URL: http:431

//dl.acm.org/citation.cfm?id=2011665.2011669.432

39 Benoît Valiron, Neil J. Ross, Peter Selinger, D. Scott Alexander, and Jonathan M. Smith.433

Programming the quantum future. Commun. ACM, 58(8):52–61, July 2015. URL: http:434

//doi.acm.org/10.1145/2699415, doi:10.1145/2699415.435

40 Dave Wecker, Bela Bauer, Bryan K. Clark, Matthew B. Hastings, and Matthias Troyer.436

Gate-count estimates for performing quantum chemistry on small quantum comput-437

ers. Phys. Rev. A, 90:022305, Aug 2014. URL: https://link.aps.org/doi/10.1103/438

PhysRevA.90.022305, doi:10.1103/PhysRevA.90.022305.439

41 J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik. Simulation of electronic structure440

Hamiltonians using quantum computers. Molecular Physics, 109:735–750, March 2011.441

arXiv:1001.3855, doi:10.1080/00268976.2011.552441.442

PLATEAU 2018

	Introduction
	Background on QC programming
	Qubits, superpositions, and entanglement
	Quantum computer operations, programs, and a taxonomy for bugs
	QC algorithm primitives, benchmarks, and open source frameworks

	Case study: Quantum chemistry
	Bug type 1: Incorrect classical input parameters
	Bug type 2: Incorrect quantum initial values
	Defense type 1: Assertions on algorithm preconditions
	Defense type 2: Assertions on algorithm progress

	Case study: Shor's algorithm for integer factorization
	Bug type 3: Incorrect operations and transformations
	Defense type 3: Language support for subroutines / unit tests
	Bug type 4: Incorrect composition of operations using iteration
	Defense type 4: Language support for numerical data types
	Bug type 5: Incorrect deallocation of qubits
	Defense type 5: Assertions on algorithm postconditions

	Case study: Grover's algorithm for database search
	Bug type 6: Incorrect composition of operations using mirroring
	Defense type 6: Language support for reversible computation
	Bug type 7: Incorrect composition of operations using recursion
	Defense type 7: Language support for controlled operations

	Conclusion

